Spectral Aimnbipuity of Allan Variance
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We study the extent to which knowledge of Al v.ainnce
and other finite-difference variances detenmines the spctiun
of a random process. The variance of first diffirences is knows
to determine the spectrum. We show that, in general, the
Allan variance does not. A complete desciiption of the ambi-
guity is given.

Real-valued random processes z (L) with stationay sith)
differences
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are often used as models for observed funictions of fime
t that grow in a nonstationary manuner, but nevertholess
scem to be driven by an underlying stationary stochsstic
mechanism, in that the character of their growti and
local fluctuations does not change with time. Fhe a1k
difference variance 12, (7) is defined as the varnaiee of
the random variable A%a (t), which, by the stationanty
assumption, depends only on 7. The Allan variance is
defined by 02 (1) = D, (7)/ (272). Tt is often wiitio ac

t - g -
/ y(u)du - / y(u)u’wl ,
t--7 t- 21 i
whare y = 2.

Finite-difference variances have been used by seve s) m
cas of science and engineering as statistical descrijtiones
of time scries. Kolmogorov (sce Ref. [1], pp. 86 037 vl
1y (1) in studies of fluid turbulence. Barues 2], Lindeey,
and Chic [3] proposed the use of 12, (1) for time devia
tion 2 () to describe noise in frequeney sources, 11 the
same purpose, Barnes [2] and Allan [4] proposed «a N
sample variance that became known as Allan v e,
and (with N = 2) was adopted as the standa d spesifioa
tion of frequency instability. Allan variance has alse boon
used to detect 1/ f notse in lasers [5), fractal exponents ju
spiking laser oscillation [6], 1/f noise in o and £ e ay
7] [8], and 1/? noise in quantum transport (9.

The spectrum of the process (1) map: to o : () by
a simple formula (sce (2) below), by which & powdi-Jaw
spectral density S (f) o fP (B8 < --1) maps to alo
7717 F In applications, one often wishes to inveri {his
mapping,. The usual practice is to infer a spectyal depeity
S(f) of form Y cafP for 2 (t) or y (¢) by observivg T
regions in the log-log plot of 62 (1) vs. 7.
problem with this practice if the actual spectrum ha- this
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parametric form. On the other hand, general inversion
formulas for S(f) (CJ its Fourier transform from I, (7)
have also been given [3]. These forinulas suggest that
D, (1) uno mibiguously detennines the spectrum. For 1y,
this assertion is knowntobe true [1]; a proof is given
below (sce The:r e 1(s)). For Dy, the present study
shows thatl the asscitionis false in general (but true if
Dy also exists see Thicor emn 1(b)). Figure 1 shows two
exaonples of distinet spoctra with the same Dz For D,
with e > 2, th ¢ problenn is open, as far as the author
kll()\\'.\.

A systernatic tres tinent of processes with stationary
nth diflerences weis given by Yaglom [10], who showed
that the covarian ¢ stiucture of the nth differences (1)
is detenmined by the one sided power spectrum of 2 (8),
a nasure j{df ) onthe positive frequency axis f > 0
satisfying corlayndiniteness conditions (see (.5) below).
(The vuinteresting, situation of a non-ergodic constant
componentin (1) is oxcluded here ) Inall practical cases,
the specty i consist- of a serles of Dirac 6 functions plus
a denisity connponent S (). 'T'he straightfo rward formula
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D, (1;}1)

(Ref [10], 3. 94) defines a mapping from the measure g to
the function D, (45710, A= indicated above, this mapping,
1s known to be one to one for = 1. For n = 2, we show
now that the mappin; is not one-to-one by exhibiting two
spectia that yuap 1o the same Dy, Let p(df) - f"3df.
Then

Dy (i) G ’—,/’/ v Gsintade = 167? (In2) 72
S0
Define aspest cumn g, consisting of a series of § functions:
for cachiinleger A pliwee adfunction of weight 47 % at
frequency 2. Then
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We assert thatdd, (140} 162272, In view of the iden-
tity
H-IIl1 a .‘~m‘" G 1’1 sin? 23:, (4)

the nipht side of (3) equals

16 lim ‘>“ fk‘i”‘, (2%99) & sin? (24 177)
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The two scries caticel exceprt for  the  one e
4~ gin? (2"m7 ), whose limit is 7272 '3 his chow s 1 ha
(In2) st (df) and - 3df have the same 12, and (he ,,,,,,
Allan variance, a constant for al 7.

An approximation of o is shownin 1 Yiguielal, i
which thie § function at 2% is reporesented by a ec ta e
of width 2% ‘"and height proportional te 8" (1
that g (df) has the same coarse power dist1ibut arcas
I73df, in the gense that, for both spectra, the powdin
any frequency band [0, b] is 4 times the powerin [0 20
It turns out that all examples of the spectial avil gty
of D2 are conuected to this property, which is piven a
precise description Mow.,

Before giving our main results, we introduce s, no
tation and terininology. The actual randoni I oces s ave
in the background; we deal only with theirspetr |1, de
fined as mecasures with certain propertics Furg I, «y1is
convenient to work onnra vector space of sigoedies es
A om-sided signal spectrum is defined t ¢, heareainalied
(signed) measure g on the Borel subsets of t he posiive
real axis whosc absolute-value Illca.sure |pisatislic:

1l (1, 00]) < oo, /]

for some nonnegative integer 7t A specty o is s ad 1o
have degrecn if 1 is the least, nonnegative intepsfo
which (5) holds. The spectra f-3df and jio hot bl
degree 2. If 1 is a signed spectrum of degy e < 0, Cefn
D, 7 ;1) by (2). ¥or a positive spectrum, 12, (7 4 can
be interpreted as an actual variance. Yo signed < cra
we dill use the tern “variance” even thougl JJ,, (77 ) can
assume any real value, and 122 (7; ¢) 7 (27 Yis st il ¢l
Allan variance. 1f ¢is a positive real munbe 5, def e 0 (0)
as the signed nmicasure that maps a sct A to yrie 1)
e 2 C A}
Define the octave variance of a signed spectruni, by

- i ()
fa7) 2)- 1]

also called “Rut man’s bandpass variance” [ 117 A« a 11,
this “variance” canassuine any real value, The sp eiia
J73df and jto both have constant octave vay iances ] of g
be a signed spectrum, and let v (df) = 452 1% (d7). (One
can prove the equivalence of the following t hr coeomnd
tions: i) p has constant octave variance; W) 4;0(2 ) 41
iii) ¥ (2. ) =r. If anonzero ¢ has constant octave van,
ance, so dots |y, and their degrec is 2. Any spe i1 4
density of form ¢ (f) f" 3whereed (f)islocallyintep aale
and satisfies ¢ (21) : ¢ (f), has constant oclave v e,
An example is the approximation to g shownini e
1 (a). More generally, one can start with any fimit e vl
measure gt on an octave interval, and extend itto the
positive 1cal axis by condition (ii).

The main results of this letter cannow bestatesd.

THrorkEM 1. Signed spectra of degree < 1arcu g ocly
determined (1) by their first-difference 71017 anees, bly
their second- difference or A llan variances.
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TneoreM 2. A sigued spectrumn has constant Allan
varcance i and ondy 1if 70 has constant octave variance.
T s cace, the twa variances are equal.

THEOREM 3. T'wo signed spectra have the same Allan
varance f ond cnly of they have the same octave vari-
ance. '

An example for fhearem 3 s given by the nonnegative
spectial densities
Sy 120 % 80 Si(f)- 2f 3 cos (2 log, f)
(sce Figure 1(b)). Their dificrence is a sigued spectrum
with octave vavianes identically equal to zero. By The-
orem 2, its Allan viriance is also zero. Just enough of
this signed spectrom has been subtracted from 8 (f) to
produce a pull in Sy, (f) at f = 1. Apgain, the two spec-
tra have the sae conrse distribution of power over the
frequency axis.

We now sketche the argoments for these theorems.

Jomplete proofs will bhe submitted elsewhere. The “if”
part of Theotem 2, and the equality of variances, can
be proved by peneralizing the computation of 1y (75 410).
Because of (4) and condition (ii) above, the integral (2)
for 1) (75 p0) 1educes tao
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which reduces to 247V,

The prool of the o her assertions depend on a function
called the generalicod autocovariance (GAGV), defined for
a sipned spectrum ool degree i by

R ) - / [eas (94 f1)
Jo
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where 1y is cvcarhitiany preitive number, It can be shown
[12) that (15 1) is continmous. This is a form of gener-
alived Youry o transform, tailored for the needs at hand.
By straightforward manipulations, one can show that it
has the expected hoearity and change-of-scale propertics,
modulo a polynoimal

ProrosrnonN 1. Let oy, oy and pg be signed spee-
tra, ¢, ¢ and ¢y 1ea' wombers, ¢ > 0. The functions
a) It(tierps -t copy) oy W () - celR(t;p2) and b)
Rict;ule-)) {0 ave polyomials.

It can be cshown that g and K forin a Fourier transform
pait as functionals on a space of test functions. Let 7 be
the sct of complox-varued functions ¢ (1) whose Fourier
transform @ (1) is infinitely dillerentiable and of compact
support n the positive resl line. Any ¢ € 77 has the
following, two propertios i) limg 400t (£) = 0 for all
ki) [ (@) i*dt = 0 for all nonnegative integral k, i.c.,
@ kills polynomiale,

TreorsM 4. 1f jo1s ¢ signed spectrum, then
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forallp ¢ T.

From this it follows that 12 (¢; ;1) for a nonvero g cannn
be a polynomial. For if I is a polynomial, theu the Jefi
side of (7) is zero for all test functions. We stese thi
formally as follows.

THEOREM b. If 11 is a signed spectrunn, and 1 {1 ) i
a polynomial, then y1 = 0. Consequently, 18 (4, 1) wiigucl
determines p.

The next theorem shows how to caleulade 12, T 1Y
Let 62 denote the central difference operator that wts o
a function g (1) by 82g(t) = gt 1)- 291 (- )

THEOREM 6. If p is a signed spectrun of degice 7 1,
then

D100 (- 8" R(O;p1). (&)

This result follows from a straightforward apsph ,,1,,1, of
(- )" to the integrand in (6). For n 1 w2, (§)
t akes the forms

Di(r)s - 621(0) = 2[R(0)- R(+)], ()

Do ()= 82 R(0): GR(0)- 8R(7)-1 21 (2¢). (10
since J2(t) is even. These relationships arve well J oo
aud easy to derive for a stationary process with antcoo
variauce R (t). The present theory applics 10 pro eese:
with stationary nith diffaences.

Proof of Theorem 1(a). Let e be the difference of two
signed spectra of degree < 1 having the same 17,0 Then
jc has degree <1, and Iy {7;0) = O for all 5. Aconding
to (9), R (t; 1) is a constant. By Theorem b, 5 0

Theorem 1(h) follows from Theorem 1(a) and Theonen
7, which asserts a forinula of Lindscy and Chie [3], Fust,
we need an asymptotic estimate for D,,.

LEMMA 1. Ifn > 1 then D, (7;40) =
00,

THEOREM 7. If ju is a signed speclrune of drgree <01
then

o2y s

Dy (1) = > 475 YDy (2595 ) (11)
k=0

Proof. Kgs. (9) and (10) give 12, (3)

(D2 (7) 4 D1 (27)] /4. Substitute a similar expressios 0
Dy (27), and so on. By Lemmna 1, the 1emainder 1o
47Dy (2™M7) tends to zero,

Thercfore, if p has degree < 1, then Dy {7;4) d e
mines 12y (7;4t), which determines jt.

Proof of Theorcin 8. Vor the “U” part, let ;) wd
{t2 have the same octave variance.  Then the ooave
variance of g =ty - g is zero. By Theomem 2 37,
Dy (i) = 0. For the “only if” part, let g1; and g, have
the same Allan variance, and let je = pry - jip. 'V hen
Dy (7yp0) = 0. By (10), R(1yp0) -- 4R (1 /2, p1) i v o0
staut. By Proposition 1(b), R(7/2;p) - Ry p {2 ) isa

palynomial. Therefore, so is I (75 p) - 4R (73 1¢0(2-)). By
Proposition 1 (0), 1'(v; g+ 4//(2)) is a polynomial. By
Theorem b, g dp (2 ) O;that s, jchas constant oc-
tave variance Ve, v hich. by the parts of Theorem 2 that
we know, tust be vero because Vi - Dy, Therefore, iy
and Jip have the same oclave varian ce.

Proof of Thearon 2 “ondy f 7.1 p has constant Allan
vatance, 1 hen fors nnecanstante, ¢f ~ Adf has the same
AlLmvarisnee as o 13y ' heorem 3 “only if”, the two
signedi speitrahave t n( same octave variance, namely, a
constant.,
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IFIG. 1. a) The approxbinate & fustion spectiun has the szine constant
Allan variance as f~3. L) These two spectrs have the same non-constant
Allan variance. The spectimn S, s obtained froon Sy by addwg a signed
spectrum with zero Allan variance,




